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1. Introduction
A space boundary inverse heat conduction problem (IHCP) is a problem that
can reconstruct the unknown boundary temperature or boundary heat flux
with one or more measured temperatures inside the heat conducting solid. This
problem has been widely investigated by many researchers, for example, Beck
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Nomenclature
a1 = coefficient of the linear temperature

function, equation (20)
b1, b2 = coefficients of the quadratic temperature

function, equation (21) 
c1, c2 = coefficients of the exponential

temperature function, equation (22) 
d1, d2, ω = coefficients of the periodic temperature

function, equation (23)
S

– = backward shift operator
S+ = forward shift operator
t = dimensionless time 
T = dimensionless temperature
U = correlation matrix for n∆t and (n + 1)∆t

time levels 
x = dimensionless space co-ordinate
χL = left hand sensor location (Figure 1)
χ*L = left hand specified sensor location
χM = right hand sensor location (Figure 1)
χ *M = right hand specified sensor location
χN = right hand boundary of computational

domain, χN = 1 (Figure 1)
σLH = error of the reconstruction temperature

at the left hand boundary (per cent)

σ*LH = error of the reconstruction temperature
at the left hand boundary with two
specified sensor locations (per cent)

σ
RH

= error of the reconstruction temperature
at the right hand boundary (per cent)

σ∗
RH = error of the reconstruction temperature

at the right hand boundary with two
specified sensor locations (per cent)

ΛLH = constant coefficient in equation (15)
ΛRH = constant coefficient in equation (16)

Subscripts
i = mesh point location in x direction
L = left hand sensor location in finite

difference scheme
M = right hand sensor location in finite

difference scheme 
N = right hand boundary of computational

domain in finite difference scheme 
o = left hand boundary in finite difference

scheme

Superscript
n = time level
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et al.[1], Flach and Özis
5
ik[2,3], Hsu et al.[4], Katz and Rubinsky[5], Kurpisz[6,7],

Murio[8], Stolz[9], and others. They have developed different techniques and
inverse solvers to solve IHCPs. IHCPs are not the same as the direct heat
conduction problems which are “well-posed”. The IHCPs are a kind of “ill-
posed” problem[1,8]. Due to the property of the iIl-posed problem, it has non-
existence, non-uniqueness and instability of the solution[10]. This property has
unstable characteristics. Prediction of an unknown boundary temperature by
an IHCP is not an easy event. In order to have a reliable estimate of the
temperature on the boundary surface, errors caused by the locations of interior
temperature sensors will be investigated. This paper considers a one-
dimensional IHCP in dimensionless form, which is solved by using a time
marching implicit finite difference inverse solver[11], and investigates the errors
caused by the variation of two interior sensor locations. Simple error relations
have been established from the numerical results of selected boundary
functions for estimating the errors of reconstruction temperatures at the both
side boundaries.

2. An exact solution used for error prediction of IHCP
In this section, we address the problem of a conducting solid with two interior
temperature sensors located at points x = χL (left hand sensor) and x = χM
(right hand sensor) as shown in Figure 1. The solid has two dimensionless
specified surface at x = 0 and x = χN = 1. These two sensors are movable
between x = 0 and x = 0 and x = χN = 1 (the left hand boundary and the right
hand boundary of the computational domain respectively).

The exact solution of the one-dimensional semi-infinite heat conduction
equation in a dimensionless form will be used for comparing the recovery
surface temperatures of the numerical results. The errors caused by the change
of the two sensor locations are determined by a time marching implicit finite
difference scheme.

The dimensionless conduction equation of the semi-infinite solid is
expressed by:

(1)

Figure 1.
Two sensor locations of
the one-dimensional
IHCP

XL XM

Inverse region Direct region Inverse region

XL, XM: Temperature sensor locations

XN0

Unknown conditions:
Q(0, t) = ?, Q(XN, t) = ?
T(0, t) = ?, T(XN, t) = ?

Known conditions:
T(XL, t) = known
T(XM, t) = known

13407ga1  25/11/97 10:53 am  Page 636



Boundary 
temperature

errors

637

with the following initial and boundary conditions,
(2)

(3)

(4)

The exact solution[12] of the system of equations (1) to (4) is:

(5)

The IHCP considered in this paper is shown in Figure 1. It is considered that the
temperature data at the two interior sensor locations x = χL and x = χM are
taken from equation (5). The inverse problem is to find the unknown time
histories of the temperatures and heat fluxes at the left hand boundary of the
solid x = 0 and at the right hand boundary of the computational domain x = χN
= 1. The numerical reconstruction results at x = 0 and x = χN = 1 are then
compared with those of the exact solution, equation (5), to obtain the error
percentages at x = 0 and x = χN = 1 caused by the change of the sensor locations.

3. Numerical scheme of the IHCP
A fully implicit finite difference scheme of equations (1)-(4) can be written in the
form:

(6)

where U is a matrix with the forward and backward shift operators S+ and S–.
For example, the finite difference scheme equation (6) is

(7)

where λ is equal to ∆t 
(∆x)2 . By using the shift operators S+ and S–, equation (7)

becomes

(8)

or

(9)

where Tn
i are the elements of matrix Tn.

Applying the left hand boundary heat flux, qo
n+1, at the (n + 1)∆t time level to

the implicit finite difference solver, equation (7), gives

(10)

Similarly, applying the right hand boundary heat flux qN
n+1 at (n + 1)∆t time

level to the implicit finite difference solver, equation (7), yields
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(11)

For the numerical calculation, equation (6) has to be properly formulated as
follows[11]: The temperatures of the two sensors located at points x = χL and x
= χM (as shown in Figure 1) at the (n + 1)∆t time level, TL

n+1 and TM
n+1, are

known, which may be added into the positions of Tn
L and Tn

M in the matrix Tn

of equation(6). The unknown heat fluxes qo
n+1 and qN

n+1 at the both hand
boundaries may be substituted into the positions of the elements TL

n+1 and TM
n+1

in the matrix T n+1 of equation(6). The two boundary heat flux coefficients,
+λ∆x for qo

n+1 and – λ∆x for qN
n+1, may be substituted into the corresponding

element positions in the correlation U matrix of the equation(6).
The matrix U of equation (6) is expressed by:

(12)

The unknown matrix of Tn+1 equation (6) can be written as:

(13)

The matrix Tn of equation (6) has the form:
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(14)

Then the unknowns of the matrix Tn+1, including reconstruction temperatures
and heat fluxes at the boundary x = 0 and x = 1, can be solved by the time
marching scheme.

4. Numerical experiments
Numerical simulation results indicate that the errors of the reconstruction
temperature at the left and right hand boundaries can be simplified by the
following relations:

• At the left hand boundary, x = 0,

(15)

• At the right hand boundary of the computational domain, x = 1,

(16)

where

(17)

The coefficients ΛLH and ΛRH can be determined by using one numerical
simulation through the inverse solver of a pair of specified sensor locations at
x = χL

* and x = χ*
M to obtain σ*

LH and σ*
RH. Owing to the ill-posed condition of the

inverse problem, the distance between the two sensor locations at x = χL
* and x

= χ*
M should be taken as far as possible[13]. In the present study, the distance

between the two sensor locations should not be taken shorter than 0.05 in the
dimensionless scale, i.e. |χL

* – χ*
M| ≥ 0.05.

The coefficients, ΛLH and ΛRH, can then be determined from equations
(15)-(16) as follows,

(18)
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(19)

To confirm the error relations presented in equations (15)-(16), the following
four temperature functions for the boundary condition f(t) appearing in
equation (3) will be used.

• Case 1: A linear function (a1 > 0)

(20)

• Case 2: A quadratic function (b1 ≥ 0, b2 > 0)

(21)

• Case 3: An exponential function (c1 > 0, c2 > 0)

(22)

• Case 4: A periodic function (d1 > 0, d2 > 0, ω > 0)

(23)

To determine the coefficients ΛLH and ΛRH, numerical values of a1, b1, b2, c1, c2,
d1, d2, and ω appearing in equations (20) to (23) have to be fixed. With the mesh
size ∆x = 0.05, ∆t = 0.05, the selected parameter values of the functions and the
calculated results of σ*

LH, σ*
RH, Λ*

LH, Λ*
RH, and two specified sensor locations are

summarized as follows,
• Case 1: A linear function

The recovery errors at the left and right hand boundaries, from
equations (15) and (16), are:

(24)

(25)

• Case 2: A quadratic function

The recovery errors at the left and right hand boundaries, from
equations (15) and (16), are:

(26)

(27)
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• Case 3: An exponential function

The recovery errors at the left and right hand side boundaries, from
equations (15) and (16), are:

(28)

(29)

• Case 4: A periodic function

The recovery errors at the left and right hand side boundaries, from
equations (15) and (16), are:

(30)

(31)

Figures 2-9 illustrate the following. Figures 2, 4, 6 and 8 show that the errors of
the reconstruction temperature at the left hand boundary, x = 0, as a function of
the right hand sensor location with the left hand sensor location as a parameter
for cases 1 to 4 respectively. Similarly, Figures 3, 5, 7 and 9 show that the errors

Figure 2.
Error of the

reconstruction
temperature at the L.H.
boundary as a function

of the R.H. sensor
location for case 1 with
the L.H. sensor location

as parameter0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

4

3

2

1

0

Error (per cent)

R.H. sensor location (in dimensionless scale)

G

F

E

D

C

B

A

Key
L.H. sensor at 0.1
L.H. sensor at 0.1
L.H. sensor at 0.2
L.H. sensor at 0.2
L.H. sensor at 0.3
L.H. sensor at 0.3
L.H. sensor at 0.4
L.H. sensor at 0.4
L.H. sensor at 0.5
L.H. sensor at 0.5
L.H. sensor at 0.6
L.H. sensor at 0.6
L.H. sensor at 0.7
L.H. sensor at 0.7

A

B

C

D

E

F

G
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Figure 3.
Error of the
reconstruction
temperature at the R.H.
boundary as a function
of the R.H. sensor
location for case 1 with
the L.H. sensor location
as parameter 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

4

3

2

1

0

Error (per cent)

R.H. sensor location (in dimensionless scale)

A

B

C

D

E

F

G

Key
L.H. sensor at 0.1
L.H. sensor at 0.1
L.H. sensor at 0.2
L.H. sensor at 0.2
L.H. sensor at 0.3
L.H. sensor at 0.3
L.H. sensor at 0.4
L.H. sensor at 0.4
L.H. sensor at 0.5
L.H. sensor at 0.5
L.H. sensor at 0.6
L.H. sensor at 0.6
L.H. sensor at 0.7
L.H. sensor at 0.7

A

B

C

D

E

F

G

Figure 4.
Error of the
reconstruction
temperature at the L.H.
boundary as a function
of the R.H. sensor
location for case 2 with
the L.H. sensor location
as parameter 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

4

3

2

1

0

Error (per cent)

R.H. sensor location (in dimensionless scale)

Key
L.H. sensor at 0.1
L.H. sensor at 0.1
L.H. sensor at 0.2
L.H. sensor at 0.2
L.H. sensor at 0.3
L.H. sensor at 0.3
L.H. sensor at 0.4
L.H. sensor at 0.4
L.H. sensor at 0.5
L.H. sensor at 0.5
L.H. sensor at 0.6
L.H. sensor at 0.6
L.H. sensor at 0.7
L.H. sensor at 0.7

A

B

C

D

E

F

G

G
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E

D

C

B

A
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Figure 5.
Error of the

reconstruction
temperature at the R.H.
boundary as a function

of the R.H. sensor
location for case 2 with
the L.H. sensor location

as parameter0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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R.H. sensor location (in dimensionless scale)
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L.H. sensor at 0.1
L.H. sensor at 0.1
L.H. sensor at 0.2
L.H. sensor at 0.2
L.H. sensor at 0.3
L.H. sensor at 0.3
L.H. sensor at 0.4
L.H. sensor at 0.4
L.H. sensor at 0.5
L.H. sensor at 0.5
L.H. sensor at 0.6
L.H. sensor at 0.6
L.H. sensor at 0.7
L.H. sensor at 0.7
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D
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Figure 6.
Error of the

reconstruction
temperature at the L.H.
boundary as a function

of the R.H. sensor
location for case 3 with
the L.H. sensor location

as parameter0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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L.H. sensor at 0.1
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L.H. sensor at 0.2
L.H. sensor at 0.2
L.H. sensor at 0.3
L.H. sensor at 0.3
L.H. sensor at 0.4
L.H. sensor at 0.4
L.H. sensor at 0.5
L.H. sensor at 0.5
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Figure 7.
Error of the
reconstruction
temperature at the R.H.
boundary as a function
of the R.H. sensor
location for case 3 with
the L.H. sensor location
as parameter 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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R.H. sensor location (in dimensionless scale)

Key
L.H. sensor at 0.1
L.H. sensor at 0.1
L.H. sensor at 0.2
L.H. sensor at 0.2
L.H. sensor at 0.3
L.H. sensor at 0.3
L.H. sensor at 0.4
L.H. sensor at 0.4
L.H. sensor at 0.5
L.H. sensor at 0.5
L.H. sensor at 0.6
L.H. sensor at 0.6
L.H. sensor at 0.7
L.H. sensor at 0.7
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Figure 8.
Error of the
reconstruction
temperature at the L.H.
boundary as a function
of the R.H. sensor
location for case 4 with
the L.H. sensor location
as parameter 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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of the reconstruction temperature at the right hand boundary, x = χN = 1, as a
function of the right hand sensor location with the left hand sensor location as
a parameter for cases 1 to 4 respectively. The symbols and lines appearing in
Figures 2 to 9 are the values calculated by the inverse solver presented in
section 3, and by the simplified relations, equations (24) to (31) respectively. The
differences between the results obtained from the simplified relations, equations
(24) to (31), and the results calculated by the inverse solver are very small,
within a relative error of 0.5 per cent.

5. Conclusions
From the numerical calculation the following conclusions can be drawn:

(1) The errors of the reconstruction temperature at the left and right hand
boundaries, caused by the variation of the two sensors located in 0 < χL
< χM < 1 of a one-dimensional IHCP, can be approximately determined
by the simple relations, equations (15) and (16) respectively.

(2) Equations (15) and (16) are confirmed by the selected four temperature
functions, equations (20) to (23). The characteristics of the errors of the
reconstruction temperatures are summarized by the numerical
simulation as follows:

Figure 9.
Error of the

reconstruction
temperature at the R.H.
boundary as a function

of the R.H. sensor
location for case 4 with
the L.H. sensor location

as parameter0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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L.H. sensor at 0.4
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L.H. sensor at 0.5
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• Case 1, the linear function, equation (20):
Equations (24) and (25) are available for any positive value of a1 in
equation (20).

• Cases 2 and 3, the quadratic and exponential functions, equations
(21) and (22), respectively:

For cases 2 and 3, the larger the temperature slope, df(t)
dt , at x = 0,

the larger the errors of the reconstruction temperatures at the
both side boundaries.

• Case 4, the periodic function, equation (23):
For a given value of ω in the range of 0 < ω < 5 in equation (23),
the larger the ratio of the coefficients d2

d1
, the larger the errors of the

reconstruction temperatures at the both side boundaries.
(3) The numerical results show that the effect of time on the errors of the

reconstruction temperature is negligibly small.
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